Design Gaia 2010, Day 2

[ ダイナミック光再構成型ゲートアレイの動的部分再構成の性能評価 ]
渡邊先生のところの学生さん。
ダイナミック光再構成アーキテクチャにおける回折光の影響。
他のビットにいくはずの光が回折してきて記憶に影響を与えるかどうか。
バックグラウンド光が多くても 4.33s は保持できることを確認。悪くない、というか充分。
[ 3次元LSIチップ積層集積技術に期待されるシステム性能の向上 ]
Si貫通ビア。SIP とちがって I/O バッファや ESD 回路を介すことなく、ダイを積層することで SoC みたいなものを簡単につくれるといいいなあ。
消費電力平準化をしないといけない。熱応力とかの問題もあるかな?
ヒートスプレッダによるホットスポットの抑制。
インターポーザ (積層したチップの支持体) は 1um – 10um くらいの配線を使うけど、そのあたりの技術というのは案外いいものがない。感光性ポリイミドを使ってリソグラフィできれいに穴を作ったりできる手法を開発。
試作したやつは差動ストリップラインが載っていて、両端に 20um のパッドがついてる。膜圧をかえてふたつつくった。薄いほうはさすがに特性きついか。20Gbps の eye diagram はいい感じ。
インターポーザのもう一つの役割は電源供給。最近のは電圧変動マージンが小さいので、キャパシタ内蔵したりとかしておる。
ホットスポットを赤外線カメラでリアルタイムで観察したりとか。60fps でみてるけど、これは最終的に msec オーダーまで見られるようにしたい。これはクロックゲーティング云々というよりも、熱の拡散を考えると時間分解能としては msec オーダーということで。
インターポーザの中を差動にするのはなぜ? → インターポーザは外につなぐ役割が大きいので、内部で閉じるものはシングルエンドでいいかも。差動のドライバとかはインターポーザに入るのかな?
隣接する層だけを接続するとの、何層もぶち抜くものの製造上の違いとかはあるのか? → チップ裏面での配線は難しいし、結局のところあまり製造上の困難さはかわらないかも。バス方式のほうが使う側はやりやすいだろうと思っている。
TSV の長さは10層積んでも1mmくらい。
[疑似SoCを用いた異種デバイス集積ウェハレベルシステムインテグレーション技術]
東芝の山田さん。(がるしあさんではない)
インターポーザ上に CMOS, MEMS などいろいろ、プロセス互換性のないものを混載すると幸せになれる。だけどこれでは小型化に限界がある。
それぞれのウェハを検査したあと切り取って組み合わせて並べ直して樹脂でかためて (ウェハ再構築)、そのあとでさらに微細配線を行う。つまりダイの組み合わせとその間の配線だけ再設計すればいいわけですね。ウェハ再構築と、異種デバイス間配線が問題。
かっこいいぞこれ!
エポキシで固めるときは真空中でやらないといけないんだって・・・
樹脂とチップの膨張係数が違うので熱応力が怖い。エポキシに気泡が入ったりしてもヤバい。
エポキシ樹脂にはたくさん石英のつぶを混ぜており、これで熱応力を減らしている。
配線は line/space が 5um/5um, 2um/2um, 1um/1um など。できてる。
ベアチップで入手できない場合は外から買ってきたパッケージを切って入れる、とかもできちゃうのか・・・いいの?売ってくれなくなりそう・・・
SIPより高くつかない? → インターポーザがないので実は SIP より安く上がる可能性が高い。回路基板メーカーが生きていけるのは、インターポーザが高いから。
樹脂の部分に TSV を作って3次元化・・・
[FPGAアレイを用いた再構成可能なHPCシステムの評価および高位言語による回路生成]
CPU上で動作させる swObject
FPGA上で動作させる hwObject
hwObject は普通にライブラリとして呼べるのでコードを書く人はあんまり考えなくてもいい。
Impluse C vs 手書き。回路規模は 1.5 倍くらい?
自動生成される回路のインタフェイスはわりと簡単で、自分で書いたものとの組み合わせもできるらしい。
hw/sw のインタフェイスのところは作ったの?(みやじい)→通信ができることを確認した程度です→あとでやりかたをおしえてください
[Ethernetによる疎結合型FPGAクラスタシステムのためのOS機能]
児島先生。
RCSYS-2, RCSYS-2.5
Ethernet (communication) / USB (config) で host と FPGA boards がつながる。
RCSYS-2.5ではFPGAボード16台構成。
むかしの密結合版と同じような環境でプログラムできる。
[先読みヘテロジニアスMDDマシンについて]
決定グラフマシン。決定グラフを評価するのが仕事。
命令はふたつだけで、超速くてちっちゃくて低消費電力。
制御回路(シーケンサ)とかネットワーク機器とか。
BDDは二分岐、MDDは多分岐。
MDDのほうが同じ結果を出すまでのステップ数を減らせる。
BDDは命令長が固定でいい。
HMDDは分岐する数が毎回かわるかもしれないから・・・間接アドレッシングすればいい。
間接アドレッシングだと2回読まなきゃいけないけど、prefetch するようにすればそのオーバーヘッドはわりと隠蔽できる。
prefetch をするアーキテクチャのほうが簡単だった。
HMDD 熱いな。メモリサイズで性能がかわるのか・・・・
[An FPGA Implementation of CRC slicing-by-N algorithm]
CRC の計算は大変らしい。10Gbps とかだと CPU では全然おいついてこないという・・・
V4LX200 を全部使って 60Gbps くらい。同時に処理するビット数を減らせば回路も半分、スループットも半分みたいな感じ。
[タスクの振舞いを考慮した動的部分再構成システム向けスケジューリングの検討]
部分再構成でいろんなタスクを実行。だけど順番が重要。
[シリコンをベースにした光電気融合技術 ~ シリコンフォトニクスによる光回路と電子回路の集積 ~]
通信は光、計算は電気、という分業がなされてきたが、そろそろ光がもっと近距離の伝送を担うことになる?
しかし、それをうまくやっていくにはエネルギー密度とコストが重要。チップ内で使うなら超小型化も重要。
そこでシリコンフォトニクス。
シリコンは通信波長帯で高屈折率材料なので、光回路も超小型集積化して低エネルギー化できる。シリコンに電子素子構造を付加して光を直接制御できる。高度な微細加工技術、量産設備などがそろっている。CMOSコンパチブルで作れれば最高っす。
シリコン・リブ導波路 4um くらい。 R=500-100um
シリコン細線導波路 0.5×0.2um くらい。R=2-5um。これが実用化するとほぼ直角に曲げられるし、かなりいいね。
いろいろな素子のシリコン互換化=CMOSプロセスを通せるようなものにすること (たとえばあんまり製造時に温度あげられないとかね)、が量産で重要。
分岐できたり、光ファイバに接続できたりするようなものができている。が、加工精度がきわめて重要。
波長多重されたのが流れているところからリング共振器とかで特定の波長だけを切り出したりすることができる。
減衰器は導波路の両隣に P/N を作ってやって電流を流せばいいらしい。すごい。でも応答速度がよくないみたい。
変調も同じようなノリでできて高速動作もできるんだけど、サイズやエネルギーが問題。
レーザー光源はけっこう大きな問題。シリコンは基本的に光らないので、なにか貼り付けてやる必要がある。
Intel では Ranman laser on Si を作っている。あるいは日立は Si 極薄膜を使った量子井戸 (QW) で光らせてる。

コメントを残す